
40	 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

VIRTUAL ROUNDTABLE

The software community of the 1980s was abuzz
with seemingly endless approaches to produc-
ing higher-quality software. At the forefront was
software metrics and its corresponding tech-

niques, tools, and process-improvement schemes. Cyclo-
matic complexity, Halstead metrics, source lines of code
(SLOC), Fagan inspection, defect counting, number of de-
fects prediction, reliability estimation and modeling, and
other metric-oriented ideas were floated as solutions to
the software quality “quagmire.”

To elucidate what went wrong—and right—in software
metrics over the past 40 years and to explore future oppor-
tunities for new or hybrid metrics, we interviewed a panel
of seven experts: Alain Abran (University of Quebec), Vic
Basili (University of Maryland), Jim Bieman (Colorado
State University), Ram Chillarege (Chillarege Inc.), Taghi
Khoshgoftaar (Florida Atlantic University), Edward F.
Miller (Software Research Inc.), and Adam Porter (Fraun-
hofer Institute). See the “Roundtable Panelists” sidebar for
information about the panel. The panelists’ individual in-
sights are presented below.

STATIC AND DYNAMIC
SOFTWARE METRICS
Computer: If you could only recom-
mend one static software metric

and one dynamic software metric, what would they be,
and why?

ALAIN ABRAN: In most knowledge fields based on quan-
titative information, such as accounting, finance, en-
gineering, and medicine, many quantitative ratios (or
other formulae) are recommended for various contexts
and purposes; nobody would expect a single measure
or quantitative formula to be sufficient for analysis and
decision-making. All of these industries have invested
considerably in defining strict standards for basic mea-
sures and their various combinations, as well as in data
collection and analysis to establish multidimensional in-
dustry benchmarks against which to compare.

The software industry, by contrast, has unrealistic
expectations that poorly defined “metrics” can solve com-
plex problems at almost zero cost. I recommend not one
specific metric but a full set of measurement standards,
as documented and recommended by the nonprofit In-
ternational Software Benchmarking Standards Group
(www.isbsg.org).

What Happened to
Software Metrics?
Jeffrey Voas and Rick Kuhn, NIST

A panel of seven experts discuss the past 40

years of software metrics, with a focus on

evidence-based methods.

	 M AY 2 0 1 7 � 41

EDITOR EDITOR NAME
Affiliation;

JIM BIEMAN: Any recommendation
for a measure depends on context.

For static metrics, if you need to
know how much software you have,
a software-size metric is appropri-
ate. If you seek information about de-
sign structure, you can measure code
properties such as coupling, cohesion,
complexity, and so on in numerous
ways. If you want to know how test-
able your system is, you can statically
measure how many specified “test re-
quirements” it contains. For example,
the number of statements or branches
can indicate how difficult it will be to
achieve a particular level of statement
or branch coverage during testing.

Regarding dynamic metrics, run-
time performance—such as time and
space requirements—is clearly im-
portant for many applications. An-
other important and useful dynamic
metric is the test coverage that’s
achieved for specified test criteria.
Finally, the most important dynamic
measure is the number and frequency
of defects discovered (or failures re-
ported) in a system after release.

VIC BASILI: If you asked me to recom-
mend one physics metric—for exam-
ple, mass or energy?—I would imme-
diately tell you that it’s a ridiculous
question. You should select measures
based on what you want to know and
what you’re going to do with that
information. The Goal–Question–
Metric approach (proposed in 1984)
identified relevant metrics by defin-
ing specific measurement goals. De-
fining goals involves specifying the
object you’re measuring (for example,
a product, process, or model), the fo-
cus of interest (for example, cost, de-
fect removal, change, reliability, or
user friendliness), the purpose (for ex-
ample, to characterize, analyze, eval-
uate, or predict), the perspective of
the person wanting the information
(for example, the manager, developer,

or organization), and the context (for
example, the organization’s charac-
teristics and context variables). All of
these help define what measures you
need and how you’re going to inter-
pret them.

RAM CHILLAREGE: It’s hard to find
commercial software organizations
with good metrics that are regularly
measured and reviewed. The two most
commonly recognized and understood
metrics are SLOC and complexity.
SLOC is better understood despite the
high variance displayed among pro-
gramming languages. Complexity is
understood to a lesser degree. So, these
are two that I would recommend.

TAGHI KHOSHGOFTAAR: Recom-
mending one static or one dynamic
software metric is akin to suggest-
ing a one-size-fits-all solution, which
is impossible in software engineer-
ing. Software-systems development
and software-engineering measure-
ments have evolved dramatically in
the past two decades, emphasizing
multifaceted focal points of critical
importance. Instead of focusing on a
single metric, we should explore in-
telligent data-wrangling and feature-
engineering methods to best exploit
the scores of auto- and expert-defined
software metrics recorded by data-
collection tools.

EDWARD MILLER: On the static side,
the general understanding is that the
more complex software is, the harder

it is to get right. So first off, I’d choose
code size; using SLOC is probably the
simplest. But simple as it is, its value is
limited. I’ve seen very complex chunks
of code that are solid and reliable. And
I’ve seen collections of little compo-
nents that you’d think would work out
of the box but fail miserably when put
through a test suite.

On the dynamic side, if you’re con-
cerned about quality for the end user,
then test-coverage metrics are the way
to go. In the 1990s, we recommended
branch coverage, but there were many
fans of statement coverage, which was
a lot easier to measure.

ADAM PORTER: It really depends on
what you want to use the metrics for.
If you asked construction workers to
name their two most useful tools, they
might consider tape measures and car-
penter’s levels indispensable for some
jobs but swear by plumb lines and
speed squares for other jobs. The job
defines which tools are right, not the
other way around.

Similarly, organizations can cre-
ate their own metrics. In many cases,
that’s a better way to go, because they
know best what they’re trying to un-
derstand and do with the metric. Col-
lecting data just because it’s available
doesn’t yield insights—you must have
a goal in mind to improve or under-
stand your software development in
some way, and then define the data you
want to collect based on that.

That said, I find that counting
SLOC is a valuable, easy-to-compute

DISCLAIMER
Certain commercial entities, equipment, or materials may be identified in this doc-

ument in order to describe an experimental procedure or concept adequately. Such

identification is not intended to imply recommendation or endorsement by NIST, nor is

it intended to imply that the entities, materials, or equipment are necessarily the best

available for the purpose.

42	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

static metric for volume of work to
be done. Similarly, I often look at
line coverage percentage as a simple,
easy-to-understand dynamic metric of
testing effort.

SOURCE LINES OF CODE
Computer: There was once a com-
mon belief that all static code
metrics essentially boiled down to
SLOC. Was that true? If so, is it still
true? If not, why?

ABRAN: Research findings from the
late 1970s and early 1980s indeed
pointed to the overall conclusion that
the various static code metrics de-
pended strongly on SLOC. Not much
research has been conducted since to
negate that conclusion. Personally,
I’m not a big fan of SLOC-based met-
rics because they depend too much on
technologies (such as programming
languages, programming styles, and
local coding standards) and their dif-
ferent implementations by tool ven-
dors or researchers, thereby inhibiting
the reproducibility and interpretation
of values from analysis models across
technologies, tools, and contexts.

BIEMAN: Many questions can only be
answered if you know how much code
is in a software system, subsystem, or
version. The short answer is “yes”—
the most useful static software metric
is still the number of SLOC. SLOC’s key
advantage is that developers generally
understand how it’s measured, and it
intuitively indicates how much source
code a method, class, function, and so
on contains. SLOC is regularly used as
the denominator in derived measures
such as defects discovered per KLOC.
Of course, SLOC has many limitations.
Different programming and layout
styles, as well as different counting
protocols (count comments, declara-
tions, and so on) can affect SLOC.

BASILI: Certainly SLOC is a reason-
able static metric if you want to know
how big something is; but, of course,
it depends on context and purpose.

Are you using [the metric] to charac-
terize your products? If so, make sure
the context is the same (same pro-
graming language, possibly the same
application domain, and so forth). If
the context is the same, are you using
[the metric] to, for example, evalu-
ate which process gives the smallest
product, or to predict, say, the likely
amount of resources needed to build
the new product?

CHILLAREGE: For a long time, the
function-point community main-
tained a steady following among prac-
titioners. However, the function-point
definition works best for classical
business applications. Function points
were captured manually and had lim-
ited applicability, so gradually faded
away. In addition, the back-firing ta-
bles that convert function points to
SLOC always made me wonder why us-
ing one would be much different from
the other. So, SLOC, for all its perceived
faults, remains the core size metric.
Most current static code analyzers spit
out the number. Thus, it’s more vis-
ible in today’s agile teams, although
it might or might not be successfully
used in projects.

KHOSHGOFTAAR: Studies have
shown the defect-prediction capabil-
ity of static code metrics, including
SLOC. In software metrics’ early days,
limited availability of data and/or
good data-collection tools influenced
the general direction of research. To
say that all static code metrics were
being essentially equated to SLOC
isn’t true. However, one could argue
that SLOC relates more to similarly
simple metrics such as basic Halstead
metrics; case studies have shown the
different predictive powers of SLOC
and complexity-based metrics, such
as cyclomatic complexity. The answer
lies in feature engineering with soft-
ware metrics, as well as in the correla-
tion among software metrics.

MILLER: SLOC highly correlates with
every other metric, particularly

Halstead metrics. So if they’re all cor-
related, why not use the simplest one?
Source-code obfuscation creates many
problems. For example, in JavaScript,
so much is lost by removal of the con-
text contained in the comments, and
source expansion tricks didn’t work
well. Eventually, SLOC came to domi-
nate people’s thinking.

PORTER: In the late 1980s and early
1990s, much software-metrics re-
search focused on defining metrics
that assessed existing software’s
quality or predicted quantities such
as expected development effort or the
number of latent faults in a code base.
Comparative studies of these metrics,
however, generally failed to show that
they were significantly and repeatedly
better than using SLOC. However,
metrics can be defined over many dif-
ferent software development artifacts,
available at different times, and used
for many different purposes. So saying
all static metrics boil down to SLOC is
too simplistic.

CAPABILITY
MATURITY MODEL
Computer: In the 1980s and 1990s,
many organizations were sold on
the idea of process metrics such
as the Capability Maturity Model
(CMM). The US Department of De-
fense (DOD) invested heavily in that
idea, and some have argued that
this added significant financial
burdens to military IT and software
systems. Did it work? And where is
CMM today?

ABRAN: Organizations without well-
managed processes are unpredictable
in terms of cost, duration, quality,
functionality delivered, and so on.
These uncertainties lead to poor qual-
ity, high costs when projects must
be extensively reworked, and con-
siderable waste when projects fail.
Process-improvement models have
been designed and adopted primarily
to manage the risks and uncertain-
ties associated with out-of-control

	 M AY 2 0 1 7 � 43

development processes. The organi-
zations I’ve observed that have imple-
mented these management concepts
are successful and well managed,
whether or not they adopted CMM.

BIEMAN: Many government agen-
cies and companies require specified
CMMI [CMM Integration] levels before

organizations can bid on a software
development project. A CMMI eval-
uation makes the development pro-
cess visible by measuring numerous
process attributes. According to the
CMMI Institute (cmmiinstitute.com),
organizations in 98 countries use
CMMI. Approximately 14,000 CMMI
appraisals were conducted during the

past 10 years. Most (76 percent) of the
appraised groups had fewer than 100
employees, and more than 70 percent
of the appraised organizations use an
agile development process. The num-
ber of appraisals has been increasing
by nearly 20 percent per year, with the
greatest increases in China, the US, In-
dia, and Mexico.

ROUNDTABLE PANELISTS
Alain Abran is a professor of software and IT

engineering at the University of Quebec. His

research interests include software productivity

and estimation models, software engineering

foundations, software quality, software

functional size measurement, software risk management, and

software maintenance management. Abran received a PhD in

electrical and computer engineering from École Polytechnique

de Montréal. He was 2004 co-executive editor of the Guide to

the Software Engineering Body of Knowledge and chairs the

Common Software Measurement International Consortium.

Contact him at alain.abran@etsmtl.ca.

Victor Basili is a professor emeritus of computer

science at the University of Maryland. His

research interests include empirical software

engineering: evaluating and improving the

software process and product. Basili received a

PhD in computer science from the University of Texas, Austin.

James Bieman is the graduate director and a

professor of Computer Science at Colorado State

University. His research interests include software

design quality evaluation and improvement.

Bieman received a PhD in computer science from

the University of Louisiana at Lafayette. Contact him at

bieman@colostate.edu.

Ram Chillarege is president of Chillarege Inc. His

research focuses on semantics and quantitative

methods to reason about software engineering

processes, products, and people, and invented

Orthogonal Defect Classification (ODC), which

increased the speed of root cause analysis by two orders of

magnitude. He received a PhD in computer engineering from

the University of Illinois, Urbana-Champaign. He received the

IEEE Technical Achievement and Meritorious Service awards,

chairs the IEEE Software Reliability Engineering steering

committee, and is an IEEE Fellow. Contact him at ram@

chillarege.com.

Taghi Khoshgoftaar is the Motorola Endowed

Chair Professor in the Department of Computer

and Electrical Engineering and Computer Science

at Florida Atlantic University. His research

interests include data mining and machine

learning, big data analytics, software engineering, biomedical

and health informatics, and computer security and intrusion

detection systems. Khoshgoftaar received a PhD in statistics

from Virginia Polytechnic and State University. Contact him at

taghi@cse.fau.edu.

Edward F. Miller is founder and CEO of Software

Research Inc., which develops automated testing

tools such as TestWorks and eValid and allied

technologies. He currently consults on automated

web quality testing, cybersecurity, and intellec-

tual property matters. Miller received a PhD in electrical

engineering from the University of Maryland. Contact him at

edward.f.miller@gmail.com.

Adam Porter is executive director of the

Fraunhofer USA Center for Experimental

Software Engineering and a professor at the

University of Maryland. His research focuses on

tools and techniques for identifying and

eliminating bottlenecks in industrial software and systems

development processes, experimental evaluation of funda-

mental software engineering hypotheses, and development of

tools that demonstrably improve fundamental software and

systems development processes. Porter received a PhD in

computer science from the University of California, Irvine.

Contact him at aporter@cs.umd.edu.

44	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

CHILLAREGE: Watts Humphrey
[whose group at the Software En-
gineering Institute (SEI) developed
CMM] explained to me that software-
engineering metrics couldn’t yet mea-
sure the quality of software acquired
by the government. Thus, contractu-
ally there was no realistic way to en-
force an acceptable criterion for soft-
ware. Therefore, he strongly felt that

the only way forward was to ensure
that the suppliers’ processes were ac-
ceptable, which would result in good
software being delivered.

CMM is predicated on the premise
that the process is far more measurable
and controllable than the work prod-
uct, namely, the software code. This set
in motion the management of software
for the next couple of decades. India
in the late 1990s aspired to enter the
software business, and CMM provided
an excellent vehicle to systematically
gain process skills and establish cred-
ibility in the market. Interest in the US
was muted for various reasons.

Software, being an intellectual
activity, defied many of the classical
techniques of process control used
in manufacturing. Although CMM’s
premise was mostly unproven, it gave
management a clear framework to di-
rect work and a ready assessment of
achievement.

BASILI: The concept of capability ma-
turity was based on [management the-
orist] Philip Crosby’s original idea and
was used to assess an organization’s
maturity. He never meant it as a pre-
scription for building a mature orga-
nization but rather as a mechanism for
finding the organization’s weaknesses.
The goal wasn’t to keep adding pro-
cesses until you get to level three and
then start dropping or refining them.

That process creates too many culture
changes and can get quite expensive.

KHOSHGOFTAAR: SEI’s original CMM
and the CMM successors have been
put to pasture, largely as a result of the
lack of CMM’s deep integration into the
organizations’ processes. DOD invest-
ment did lead large military defense
contractors to accept CMM. However,

in many cases, significant maturity
success was achieved only after in-
corporating the CMMI approach. One
could deduce that CMMI was a result of
lessons learned from the stand-alone
practice of CMM by organizations.

MILLER: Yes, but only indirectly. Many
papers at QW/QWE [Quality Week/
Quality Week Europe] pivoted off the
basic CMM idea, bending it to fit the
needs of “quality assurance and test-
ing” organizations. The key notion
was maturity of the internal process
used and technical maturity of the
team of programmers, developers, and
testers involved.

With Harlan Mills’ “chief program-
mer teams” [at IBM] in the early 1970s,
everyone understood that democracy
in programming work was no virtue.
But not everyone could fill the shoes
of a Mills-like “chief programmer.”
The compromise seems to have been
to develop metrics for the entire team,
which led to CMM and subsequent
models. Why it worked is pretty sim-
ple: it forced people to think in process
terms and pay attention to outcomes.

PORTER: CMM isn’t a set of process
metrics but rather a set of key pro-
cess areas that, when implemented
effectively, should help compa-
nies improve their software quality
while controlling cost. One of a CMM

organization’s goals is to define and
implement process metrics that cap-
ture quality drivers specific to that
organization.

CMM is based on well-studied no-
tions of statistical process control and
continuous process improvement. The
general idea was that if you can mea-
sure a process, then you might be able
to repeat it. If you can repeat it, then
you might be able to improve it. If you
can improve it, then you might be able
to fine-tune it, and so on. In essence,
first get consistency and control, then
go for improvement.

The CMM framework assumed
that to go through these steps, orga-
nizations needed certain capabilities,
such as configuration management.
I’ve seen companies vastly improve
by working through this framework.
However, a company with a given level
of capabilities won’t automatically
produce a better product faster and at
lower cost than companies with lower
CMM levels. It really depends on what
the company is doing with these ca-
pabilities and whether and how fast
the underlying development require-
ments changed. Once specific CMM
levels became prerequisites for getting
DOD contracts, some companies were
only interested in getting the creden-
tial and not in using their capabilities
to improve. Additionally, the process
itself became more heavyweight, hard
to adjust, document-focused, and ex-
pensive, ultimately becoming less
cost-effective for many practitioners.

NEW STATIC METRICS
Computer: The software metrics of
the early 1990s were mainly static;
however, software’s behavior is
dynamic. Do we have newer static
metrics that better reveal software
behavior and semantics than only
software syntax?

ABRAN: I’m puzzled by this view that
coding is the only software develop-
ment artifact to monitor and control.
For instance, requirement quality
and size are the foremost artifacts

You should select measures based on
what you want to know and what you’re

going to do with that information.

	 M AY 2 0 1 7 � 45

underlying the whole development
process; ambiguous and incomplete
requirement specifications lead to ma-
jor problems, including continuous
reworking throughout all subsequent
development stages, improper plan-
ning and monitoring, and, of course,
incomplete or inaccurate definitions
of testing artifacts. I haven’t seen sig-
nificant advances in SLOC-related
metrics since the early 1990s; however,
there have been significant advances
in requirement specification and ar-
chitectural measurement that can be
extended throughout the full lifecycle
to ensure traceability in later project
phases and normalization of various
technology-dependent ratios.

BIEMAN: I’m interested in the design
structure at an intermediate abstrac-
tion level. For example, you can an-
alyze a software design (and imple-
mentation) in terms of the existence
and number of realizations of various
design patterns and the connection
between design-pattern realizations.
Another measure that can be very
useful in analyzing the testability
of a system is to count the number of
test requirements that test cases must
cover to achieve particular criteria.
We can also understand more about a
design by categorizing and counting
design-pattern realizations.

BASILI: There were lots of dynamic
metrics in the 1990s, for example, reli-
ability and performance. It’s not clear
whether a static metric can provide
insight into the dynamic behavior of
software unless you look at that met-
ric’s variation over time. Reliability
and performance metrics are com-
monly used in many organizations; for
example, look at Elaine Weyuker and
Tom Ostrand’s more recent work ap-
plying reliability models at AT&T.

KHOSHGOFTAAR: Software devel-
opment is a complex process, with
many variable attributes including
development methodology and proj-
ect objectives. Therefore, it’s difficult

to determine a consistently good met-
ric for predicting software behavior.
Case studies have shown SLOC and
other simple metrics are better defect
predictors for some projects than for
others. Likewise, newer metrics, both
static and dynamic, show varying ef-
fectiveness at predicting software be-
havior for different projects. Software
metrics’ current focus has been on
combining syntax descriptors and dy-
namic software attributes. In general,
the novelty of newer static metrics will
vary from expert to expert; however,
the discussion should also include fea-
ture selection for optimal metric selec-
tion based on modeling goals.

MILLER: The software testing commu-
nity has put a lot of research effort into
extrapolating beyond the structural
metrics, but I’ve not seen much that
reveals anything particularly valuable
for predicting trouble spots.

In a different arena, you’ll find
many patents and patent applications
dealing with manipulation of a web-
page DOM [Document Object Model]
and extraction of user-oriented met-
rics from delivered webpages. This is
very neat and sophisticated, even if
the importance and application aren’t
fully clear. Some very big companies
collect such things as “DOM settling
time” from remote machines globally,
despite the fact that it’s not really a sig-
nificant performance bottleneck for
all but the hairiest webpages.

PORTER: One interesting trend in
modern software development is
model-driven software engineer-
ing. Models are increasingly being
used, especially for embedded cyber-
physical systems, to specify require-
ments, analyze prototype implemen-
tations, and even generate system
code. Metrics defined on models rather
than source code are currently being
developed. These metrics have many
desirable properties. For instance,
they’re defined at the requirement or
behavioral level, which is often more
understandable to the end customer

than source code or implementation-
level metrics are.

STRUCTURAL METRICS
Computer: Structural metrics mea-
suring dynamic behavior have been
around for decades. The most com-
monly cited are statement coverage,
branch coverage, and modified con-
dition decision coverage [MCDC],
plus a few module-level coverage
metrics for object-oriented code.
What percentage of developers in
your industry or profession use one
or more of these metrics? Are there
other dynamic metrics being used?

BIEMAN: I don’t have concrete, quanti-
tative information concerning the use
of coverage tools in industry. Anec-
dotal evidence from discussions with
industry practitioners and the wide
availability of coverage tools suggest
that the coverage achieved during
testing is commonly measured.

BASILI: Coverage metrics have been
refined for newer development para-
digms and languages such as object-
oriented design. Their primary use has
been to identify test quality. Of more
importance is requirement coverage—
ensuring that all requirements are ap-
propriately covered and checking the
requirements coverage vis-à-vis the
various code-coverage metrics. Cov-
erage metrics don’t measure the dy-
namic behavior of the software prod-
uct but the quality of the test suite.
They’re still commonly used to cover
unit tests as well as system tests.

KHOSHGOFTAAR: A look at the
PROMISE software project reposi-
tory (openscience.us/repo) indicates
the large extent to which organiza-
tions use structural code metrics to
model software project behaviors. Re-
searchers have used execution-based
metrics such as computational time
to model dynamic behavior. More
recent studies have categorized dy-
namic software metrics such as
cohesion-based dynamic metrics,

46	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

coupling-based dynamic metrics, and
execution-traces-based metrics. Some
predictive studies showed such met-
rics’ superior power over traditional
structural metrics.

MILLER: This brings to mind the soft-
ware coverage metrics war from the
1970s through the early 1990s. State-
ment coverage was easy to measure
but gave you a false sense of security.
MCDC was harder to achieve and
therefore got far less traction. Path or
verification condition coverage was
very hard to measure and got almost
no traction.

The discussions were fascinating
and building the measurement tools
was exciting, but only a few developers
really had the resources to use these
tools in their intended way. Besides,
when a budget crunch hit, coverage
testing was one of the first steps to
toss out. So, sad to say, overall usage
of test-coverage metrics was probably
less than 1 percent.

But it might be worth mentioning
the modern practice of delivering a
“new version” of a product to a sub-
set of your user community and then
waiting for the complaints—a kind
of “involuntary crowd-testing.” It’s
sneaky but effective at inexpensively

ironing out goof-ups!

PORTER: While I don’t have a well-
validated percentage to report, the
use of simple test-coverage metrics
has increased substantially in recent
years. One reason is that use of auto-
mated testing tools and environments
has exploded in the last decade. It’s
increasingly easy to build and execute
large test suites and capture test-cov-
erage information as a nearly free by-
product. However, coverage usually

isn’t sufficient—you must also evalu-
ate the test cases’ quality and quantity.
A single test case that executes all the
lines of a system isn’t useful.

SOFTWARE
RELIABILITY MODELING
Computer: Software reliability mod-
eling and theory have played a role in
the past and continue to do so now.
What percentage of developers in
your industry or profession use re-
liability modeling? And is there one
or two you recommend over others?

BIEMAN: I don’t know that software re-
liability models are commonly used in
most organizations.

BASILI: The most effective use of reli-
ability measurement is when the sys-
tem is operational, to predict how the
system will perform in practice.

CHILLAREGE: “Software reliability” in
the broadest possible definition would
include terms and measures such as to-
ken, defect rates, backlog, closer time,
customer satisfaction, first-time fix,
re-create, criticality, pervasiveness,
and trigger. Some of these are com-
monplace in industry but unheard of in
academic articles. However, numerous

academic articles discuss software reli-
ability nuances that are foreign to even
experienced software engineers in in-
dustry. This chasm has been bridged,
just barely, in the past 20 years. Con-
sequently, the industry hobbles along
without leveraging a fairly large com-
munity of academic researchers. De-
spite this, software reliability metrics
are probably the most widely used
software engineering metrics—far
more than the metrics that have to do
with size, complexity, or productivity.

MILLER: John Musa’s work [on software
reliability engineering (SRE)] was sem-
inal in this area, but there’s no “wear
out” phenomena to drive the model.
That always struck me as a funda-
mental stumbling block. Without an
underlying theory, statistical analysis
is meaningful only for one methodol-
ogy and one team. Change anything
and the numbers could go anywhere.
It wasn’t something we put any stock
in because we always fixed (or at least
documented) every error as fast as we
could. Zero outstanding critical errors
was the continuous goal.

PORTER: In the 1980s and early 1990s,
software reliability growth models
were heavily investigated. More re-
cently, there’s been relatively little new
research in the main academic software
engineering conferences. However, as
cluster and grid computing models be-
came more popular in the late 1990s and
early 2000s, practical measurements
and applications of reliability (and
availability) metrics were and continue
to be used and improved. Descendants
of these concepts are used in today’s
cloud computing infrastructures.

As far as recommending reliabil-
ity models, you should fit the model
to the data, not the other way around.
Unfortunately, there’s a lack of simple,
out-of-the-box reliability modeling
software packages for software devel-
opers to experiment with. Reliability
modeling also generally requires that
your testing environment accurately
reflects your operational environ-
ment, which is difficult or impossible
to do in many cases (think of cloud-
based services or mobile computing).

RELATIONSHIP BETWEEN
METRICS AND TESTING
Computer: Software testing tech-
niques and tools are often based on
metrics. What do you see as the re-
lationship today between metrics
and testing?

ABRAN: Metrics per se are only in-
puts into quantitative models looking

There’s a lack of simple, out-of-the-box reliability
modeling software packages for software

developers to experiment with.

	 M AY 2 0 1 7 � 47

for relationships across a number of
variables. The challenge is that such
relationships have been inadequately
investigated to figure out which
threshold values are meaningful in
various contexts, including the very
specific context of the software pro-
grams being tested.

Most of these code complexity and
logic complexity metrics correspond
to algorithms that capture only some
of the targeted aspects—none of which
directly represent what needs to be
tested. By contrast, any functionality
measured by a function-points method
represents what functions must be
tested under various sets of condi-
tions; therefore, identifying these for
measurement purposes can be reused
directly as functional scenarios for
testing purposes from both the devel-
oper and user perspectives and their
quantitative information can be used
for various analyses.

BIEMAN: A developer can use one of
the readily available coverage tools to
determine whether coverage goals are
met. However, testers know that their
goal isn’t 100 percent coverage but
rather to find 100 percent of the faults.
Unfortunately, no tool can tell you that.

BASILI: I believe the most common
metrics for testing are coverage
metrics.

CHILLAREGE: Software testing could
be a beneficiary of good metrics, es-
pecially given the numerous research
ideas on methods to better test soft-
ware. However, this is hardly the case
in industry.

To put it in perspective, software
testing continues to be one of the least
advanced methods in the software
development process. The product
groups are most often better than their
IT cousins. Most testing is manual.
Test automation tends to be the high
watermark for many organizations.
Although automated testing’s value is
broadly recognized, its penetration in
the practice is relatively low. It’s also

the case that building a completely au-
tomated test environment is nontriv-
ial. DevOps and agile methods have
encouraged a focus on automation.
The good news is that it’s picked up in
the past couple of years.

The software testing services that
are sold are often time and materials
contracts. And most testing vendors
are reluctant to automate because they
perceive it as a net loss of revenue.
Leading-edge vendors take a longer
term perspective and see automated
testing as a win–win.

KHOSHGOFTAAR: Software testing
techniques and tools aren’t limited
to guidance from different soft-
ware metrics, including static code
metrics and dynamic metrics. The
software-testing phase often suf-
fers due to compressed deployment
time frames, prompting the output
of metrics-based predictive models
to guide software testing. However,
much of testing is also guided by test
cases’ planning and code coverage.
The project’s criticality influences its
software-testing emphasis. In today’s
agile-development environment, soft-
ware development and testing are it-
erated in a compressed time frame. So,
the emphasis on guidance by metrics
on software testing and testing tools
tends to increase.

MILLER: I’ve noticed some more mod-
ern metrics oriented to webpages.
One is a “heat map” based on users’
recorded GUI activity on a webpage
front. At least a couple of vendors offer
heat maps based on data consolidated
across many users, sometimes without
the users’ permission. What’s attrac-
tive is that you get a cleaner picture
of what users think is important, so
you know where to focus testing: right
where users were really looking.

But thinking historically, I’m
skeptical as to whether testing wasn’t
guided by any metric other than
“what’s important right now.” Test
teams, rightly enough, focused on the
latest additions to an application but I

don’t recall any teams that systemati-
cally measured and then tested in re-
sponse to a metric.

PORTER: Popular testing metrics do a
reasonable and generally cost-effective
job of helping developers understand
how thoroughly they’re testing their
software. Rather than viewing 100 per-
cent coverage as an overriding goal, de-
velopers often use coverage informa-
tion to point out where their test suites
are inadequate. For this reason and be-
cause complex code-coverage metrics
can be prohibitively expensive to col-
lect (especially for very large systems),
lighter-weight dynamic test-coverage
metrics will be an interesting research
topic in the near future.

PROCESS IMPROVEMENT
Computer: Process improvement
suggested that a better process and
better organization would pro-
duce better software. Did that ulti-
mately occur, and can you suggest
examples?

ABRAN: In organizations with sound,
continuous process improvement, I’ve
observed considerable improvement
in the developer’s credibility from all
perspectives: quantity of functional
requirements delivered (quantified
objectively using ISO-recognized
measurement methods), quality de-
livered, and predictability, as well as
significantly fewer failed projects; that
is, projects are abandoned in a timely
manner where appropriate. I’ve also
noted higher maturity levels (leading
to a better understanding of process
capability) and more realistic expecta-
tions (instead of inflated claims of de-
livery within an impossible schedule
and unrealistic budgets).

BIEMAN: Paying careful attention to
the development process and orga-
nization will lead to better software.
Many, if not most, software develop-
ment organizations are using some
form of an agile process (for example,
Scrum).

48	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

BASILI: The best example is NASA
Software Engineering Laboratory
work during the 1980s and 1990s,
when we showed how various methods
reduced costs and improved quality (as
measured in resources expended and
defects delivered). The improvement
came from evolving the processes to
meet the particular context based on
measurement and feedback. More re-
cently, look at the work of Lionel Bri-
and and his Software Verification and
Validation Laboratory (wwwfr.uni.lu/
snt/research/software_verification_
and_validation_lab).

CHILLAREGE: When process improve-
ments are successfully implemented,
the gains are phenomenal. But in-
stances of continuous improvement
are rare. In our work, we’ve seen im-
provements so explosive that the num-
bers are embarrassing. At IBM, a pro-
cess improvement program based on
orthogonal defect classification (ODC)
yielded savings of over $100 million.
The same technology when applied at
Nortel yielded similar results. In each
instance, senior management under-
stood the methods used and was the
primary sponsor. The work was exe-
cuted by a small technical team that
had access and influence in the orga-
nization. In both instances, the work
spanned between 1 and 3 years.

When organizations attempt pro-
cess improvements without the guid-
ance of experienced people, they often
fail due to poor implementation and
lack of skill. What stands out after
20 years of implementing process im-
provements across the globe is how
few organizations support and im-
plement them successfully. Software
outsourcing as a time and materials

contract doesn’t encourage process
improvement. It places the responsi-
bility on business and vendor man-
agement, which might be unable to
find and leverage the necessary soft-
ware engineering knowledge to suc-
cessfully build process improvement
into the contract.

KHOSHGOFTAAR: To a certain extent,
yes, an improved focus on better pro-
cesses and organization has resulted
in less faulty software. The CMMI In-
stitute and the SEI maintain reports of
software development organizations
that have measurably benefited from
improving their development and or-
ganizational process. However, those
examples typically come from high-
assurance and/or mission-critical
software projects, which have much to
lose from poor software.

MILLER: I hate to be pessimistic, but I
don’t think the process-improvement
movement made many inroads. Which
is sad, because having a better process
almost certainly improves the product’s
quality. But in the real world, program-
mers and developers chase bug reports
more than anything systematic.

PORTER: As long as you don’t read the
word “better” to mean more detailed,
formal, rigid, and so on, then I would

say yes. Better organizations using
better processes (as defined by them)
will produce better software. For a
concrete example, we worked for many
years with a local company called
Keymind. They decided to follow the
CMMI approach, investing heavily in
measuring their performance and im-
proving their skills and tooling. Their
investments ultimately paid off, and

they became a truly excellent organi-
zation widely recognized for their in-
novative products.

But process improvement goes be-
yond CMMI-type approaches. Many
organizations have adopted and insti-
tutionalized agile methods and now
produce better, more cost-effective
software than they did before the
switch. Other organizations have in-
vested strategically in building spe-
cialized domain knowledge within
their development team and, again,
now produce better software and are
more effective in their specific cus-
tomer markets.

COMMERCIAL OFF-THE-
SHELF PRODUCTS
Computer: Once COTS products be-
came the standard for software dis-
tribution, and source code was no
longer available to customers, where
did metrics fit in?

ABRAN: SLOC-based metrics are al-
most irrelevant in a COTS context. In-
dustry hasn’t used new software met-
rics, although they could have used
function points to manage numerous
COTS implementation and mainte-
nance issues, including normalization
of data collection to facilitate internal
and external benchmarking for port-
folio management and to objectively
verify claimed productivity improve-
ments with COTS.

BIEMAN: Customers can (and do) mea-
sure the size of COTS products by num-
ber of bytes of storage (both RAM and
disk). Dynamic measurements can
still be used.

BASILI: This changed the game for
source-code metrics and forced whole
new processes to be developed to take
COTS into the equation. It’s a good ex-
ample of why metrics must be defined
for the context.

CHILLAREGE: The COTS and metrics
connection is at best remote. No en-
gineering method that has matured

Testers know that their goal isn’t 100%
coverage but rather to find 100% of the faults.

Unfortunately, not tool can tell you that.

	 M AY 2 0 1 7 � 49

can be allowed to deliver a service and
claim it’s not accountable on key pa-
rameters that affect society: reliabil-
ity, injury, productivity, safety, and so
forth. Yet the software industry has.
Only today has the threat of software’s
security threats finally caught atten-
tion. The initial run-up on security was
accepted after embarrassing disclo-
sures by large firms. With its impact on
politics, it’s finally garnered more at-
tention. Yet, the focus is mainly on pro-
tection and damage control and not on
the fundamentals of the technology.

For years, the technical communi-
ties that wielded influence criticized
disciplines such as metrics and reli-
ability that focused on programming’s
behavioral aspects. Consequently,
funding and generations of students
and researchers were guided by pri-
orities that ignored these very indus-
try-relevant areas. Today, those dis-
ciplines that wielded influence have
been commoditized, and we have a
dearth of technical effort in needed
software engineering areas. I founded
and headed the Center for Software En-
gineering at IBM Research. My predic-
tion then was that software engineer-
ing would regret the disposition held
by the software technical community.
IBM wisely let my opinion be heard,
albeit without further investment or
action. Twenty years later, we’re wit-
nessing the consequences that we, the
collective technical society, chose.

KHOSHGOFTAAR: Because source
code isn’t available for COTS soft-
ware, evaluation metrics tend to fall
under categories of cost, return on
investment, reliability, availability,
and general black-box testing. The
development organization might rely
on quality-certifying entities that in-
dependently test COTS products and
maintain data on product quality and
related features for acquisition teams
to review.

PORTER: Metrics aren’t restricted to
source code. Organizations can and
do define metrics for non–source

code development artifacts, includ-
ing requirements, user-visible display
screens, and system resource files.
The example of COTS is good. In work
we’re doing for a large government
organization, we’ve been using met-
rics to understand how much COTS

customization this organization will
need to perform.

We looked at many measures and
realized that COTS development pro-
cesses and activities, not just devel-
opment of the glue-ware and integra-
tion of COTS components, must be
considered; for example, what it takes
to learn the capabilities of COTS prod-
ucts, configure COTS components to
satisfy requirements, resolve issues
with interfacing development teams,
and enhance individual COTS prod-
ucts. Each activity requires significant
effort, can cause great difficulty for a
project, and isn’t usually fully planned
and allocated the effort needed to de-
velop a project.

FUTURE DIRECTIONS
Computer: Are current metrics
cost-effective? What aspects of soft-
ware development aren’t being ade-
quately addressed by metrics today,
but could be? What are some fruit-
ful areas for metrics research?

ABRAN: The key issue with software
metrics isn’t cost, but whether they sup-
port decision-making. Organizations
and industries must invest in analysis
models relevant to their contexts and
collect historical data to bootstrap
their own models and threshold val-
ues for decision-making. Metrics tool
vendors’ professional practices must
also improve. At present, whatever
metrics they propose lack traceability
to well-documented benchmarks or
international standards.

Much research on software met-
rics is wrongheaded. Researchers too
often collect metrics solely because
they’re easily automated. Then, using
whatever open source data they can
acquire, without verifying its quality,
they figure out which ones might lead

to more accurate outcomes for what-
ever purpose. This isn’t a sound re-
search methodology.

BIEMAN: Most of the metrics used are
relatively cheap to apply. However,
metrics misuse can add costs by misdi-
recting developers. I’d like to see more
research in two areas: evaluation of the
measurable benefits and costs of apply-
ing common design advice, and pro-
cess advice in terms of time to market,
delivered faults, and maintainability;
and use of Bayesian networks to build
causal models for decision-making un-
der the inherent uncertainty involved
in software development.

CHILLAREGE: I invented ODC more
than 25 years ago. ODC extracts the
semantics contained in defects into
four principal groups and, within
each, bins them into independent cat-
egories. This multidimensional cate-
gorical data behaves like eigenvalues
in the software development process
space, thus creating a new measure-
ment system. A dozen different pro-
cess measurements and evaluations
can be performed with ODC data. It’s
changed how root-cause analysis is
performed, reducing effort by two or-
ders of magnitude.

KHOSHGOFTAAR: Current software
metrics are generally cost-effective.
However, their extent of usage and
role are dictated by project and organi-
zational goals. An area that could use
further insight via measurements is

When process improvements are successfully
implemented, the gains are phenomenal.

50	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

VIRTUAL ROUNDTABLE

the human impact of software quality.
This is generally measured via defects
and process metrics. An interdisciplin-
ary focus between software engineer-
ing and psychology might yield in-
sights. Another area is the influence of
big data analysis on existing software
development practices.

PORTER: Cost-effectiveness is con-
text dependent. In addition, metrics
will be more cost-effective if the defi-
nition of the metrics and the process
to gather these metrics are carefully

designed so as to be cost-effective.
Many companies create ad hoc mea-
surement plans and don’t take advan-
tage of data automatically captured
by development or test tools, nor do
they plan for automated preprocess-
ing or compilation of related data for
easier analyses.

As for fruitful research areas,
there’s room for defining and val-
idating metrics over development
models. Model-driven development
approaches are increasingly finding
their way into standard practice.

W e thank our panelists for
sharing their expertise
and for their candor. To

learn more about the fundamentals
of software metrics, see the “Further
Reading” sidebar for recommended
resources. So what do you think: are
software metrics still relevant? What’s
the best way to incorporate metrics
into modern software development
and delivery?

JEFFREY VOAS is a computer scientist at NIST. His research interests include the
Internet of Things and fundamental computer science shortcomings. Voas received
a PhD in computer science from the College of William and Mary. He is a contribut-
ing editor for Computer’s Cybertrust column and a Fellow of IEEE and the American
Association for the Advancement of Science. Contact him at j.voas@ieee.org.

RICK KUHN is a computer scientist at NIST. His research interests include com-
binatorial methods in software testing and access control models. Kuhn received
an MS in computer science from the University of Maryland, College Park. He is a
Senior Member of IEEE. Contact him at kuhn@nist.gov.

FURTHER READING

Below are the collective group’s recommendations for

those interested in learning more about software metrics

fundamentals.

»» A. Abran, Software Metrics and Software Metrology, John

Wiley & Sons, 2010.

»» T. Ball et al., “If Your Version Control System Could Talk

… ,” Proc. Workshop Modeling and Empirical Studies of

Software Engineering (ICSE 97), 1997.

»» V. Basili et al., “SEL Software Process-Improvement Pro-

gram,” IEEE Software, vol. 12, no. 6, 1995. pp. 83–87.

»» N. Fenton and J. Bieman, Software Metrics: A Rigorous

and Practical Approach, CRC Press, 2014.

»» N. Fenton and M. Neil, Risk Assessment and Decision

Analysis with Bayesian Networks, CRC Press, 2012.

»» R.B. Grady and D.L. Caswell, Software Metrics: Establish-

ing a Company-Wide Program, Prentice-Hall, 1987.

»» M.H. Halstead, Elements of Software Science, Elsevier

Science, 1977.

»» H. Hecht, A Survey of Software Tools Usage, tech. report

NBS 500-82, NIST, 1 Nov. 1981; www.nist.gov

/publications/final-report-survey-software-tools-usage.

»» D.W. Hubbard, How to Measure Anything: Finding the

Value of Intangibles in Business, John Wiley & Sons,

2010.

»» W.S. Humphrey, Introduction to the Personal Software

Process, Addison-Wesley, 1996.

»» Int’l Software Benchmarking Standards Group, www

.isbsg.org.

»» ISO/IEC 15939:2007: Systems and Software Engineer-

ing—Measurement Process, Int’l Org. Standardization,

2007; www.iso.org/standard/44344.html.

»» J.D. Musa, Software Reliability Engineering, Osborne/

McGraw-Hill, 1988.

»» R. van Solingen and E. Berghout, The Goal/Question/

Metric Method: A Practical Guide for Quality Improve-

ment of Software Development, McGraw Hill, 1999.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

